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LETTER TO THE EDITOR

The conductivity of a foam
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Abstract. We present a new analysis of the dependence of electrical conductivity on liquid
fraction for a foam. Ignoring the contribution of the films to both the liquid content and the
conductivity, we consider only the network of liquid-filled Plateau borders and the junctions at
which they meet. The effect of the junctions is calculated in the form of a vertex correction to
both the conductivity and liquid fraction of the network. The correction is sufficient to account
for the deviation from the linear formula of Lemlich for liquid fractions up to about 10%.

In this letter we present a significant refinement of previous theories of foam conductivity,
by making allowance in a systematic way for the effects of Plateau border junctions. Our
original motivation lay in the calibration of electrical conductance as a convenient method
for monitoring the density (or liquid fraction) of a foam (Lemlich 1977, Peters 1995, Weaire
et al 1995). Currently this is being used to test theories of foam drainage in vertical columns
(Peters 1995, Verbist and Weaire 1994).

The dependence of resistivity on liquid fraction (or solid fraction for a conducting solid
foam) is not obvious. We are, in general, faced by a disordered structure of thin films
meeting at Plateau borders. Nevertheless, there is an elementary theoretical analysis, due
primarily to Lemlich (1977), which relates the foam conductivity,σf , to the volume liquid
fraction φl . The conductivity expressed relative to the valueσl for the liquid is given by
the elegant approximation

σ ≡ σf

σl

= 1

3
φl. (1)

This is based upon neglect of current which passes through liquid films, so that the
system reduces to a network of Plateau borders of the type shown in figure 1.

We will extend the argument of Lemlich to derive a nonlinear relation which is more
accurate at higher values ofφl . We present experimental data which are consistent with
the new formula up to liquid fractions of the order of 0.1. The nonlinearity arises from the
swelling of the junctions at which the Plateau borders are joined.

The development of this correction to the theory is quite elementary, but it requires the
accurate calculation of some geometrical constants, which we have undertaken.

The classic analysis of Lemlich rests on a number of reasonable approximations, in
addition to discounting the contribution of the liquid films. The geometry of the remaining
Plateau border network is simplified as follows. The model is one ofstraight borders
of uniform cross-section,isotropic (uniformly distributed in orientation) and meeting at
symmetric tetrahedralvertices. No real foam conforms entirely to this description, but
these are good approximations for many typical samples. It is further assumed that the
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Figure 1. A section of a uniform Plateau border of lengthL and widthδ. In generalδ is defined
in terms of the Plateau border pressure,Ppb, by δ = −σs/Ppb whereσs is the surface tension
andPpb is negative (measured relative to the gas pressure). Here we will takeσs = 1.

width of the Plateau borders is small compared with their length, so that there are no end
corrections.

These judicious idealizations of the network structure reduce it to a form in which
its conductivity is given by the Lemlich formula (1), according to arguments which we
reproduce and extend below.

The Lemlich formula should be useful for low values ofφl , i.e. in the dry-foam limit.
Previous and subsequent experiments confirmed its validity in this limit (see e.g. Clarke
1948, Chang and Lemlich 1980, Datye and Lemlich 1983).

Not surprisingly, a considerable departure from linearity is observed asφl is increased
towards its extreme value for a stable foam, which is around 0.35.A priori, this might be
attributed to any of several effects associated with the breakdown of the approximations
stated above. Indeed, the topological structure itself changes, the junctions merging to
form higher-order vertices in the network as the wet limit is approached. Although full
simulations will soon be possible, a transparent theory is unlikely to emerge quickly from
these. Here we isolate a single correction to the elementary theory, and find it to be adequate
for data in the range 0< φl < 0.08.

The correction centres on the properties of the tetrahedral junction of Plateau borders,
which is shown in figure 2. This is a surface of constant mean curvature with four symmetric
arms forming Plateau borders. We are concerned with its contributions to both thevolume
of liquid and theconductanceof the network of which it is part. These may be expressed
as follows.

Let the Plateau borders have an asymptotic widthδ, which is also the radius of curvature
in their cross-section, and the radius associated with mean curvature over the entire surface
(figures 1 and 2). The cross-sectional area is

Apb = cgδ
2 (2)

wherecg = (
√

3 − π
2 ).

In Lemlich’s model, each border of lengthL contributes to the total liquid volume the
amount

Vpb = ApbL. (3)

The effect of each junction is to contribute an additional volume of the order ofδ3.
We may think of this as changing the effective length of each adjoining border fromL to
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Figure 2. A single vertex and its four Plateau border arms modelled using the Evolver. In the
limit of large L (measured from the centre of the vertex) the width of the arms tends toδ.

Leff , retaining equation (3). There are, of course, various other ways of representing this
correction.

The surface shown in figure 2 was constructed using the Surface Evolver (Brakke 1991)
and its volume was calculated for various lengths of the attached arms. The results shown
in figure 3 indicate that the volume correction may be represented by

Lv
eff = L + 0.75δ (4)

as a correction to the lengths of the attached arms. However, each Plateau border in the
network is attached totwo vertices, hence

Lv
eff = L + 1.50δ (5)

in this case.
We can perform another computation to estimate the length correction in the electrical

resistance of a single Plateau border. Since the Surface Evolver creates a tessellated surface,
it is ideal for the application of a boundary integral technique (Bonnet 1995) to calculate
the resistance of the object shown in figure 2. This involves setting the electric potential,u,
at the ends of the borders to appropriate values (two positive and two negative for example)
and solving Laplace’s equation,∇2u = 0, for the potential throughout the vertex. We need
to calculate the current flow across the ends of the Plateau border arms, which is directly
related to the normal derivative ofu at these end surfaces. Ifx andy label points on the
surfaceS, andq(y) is the normal derivative ofu at y, i.e. the derivative in the direction
normal toS at y, then the following holds for each pointx:∫

S

{[u(x) − u(y)]H(x, y) − q(y)G(x, y)}dSy = 0 (6)

where the Green functionG(x, y) = 1
4πr

, H(x, y) = −(1/4πr3)r · n, r = y − x andn
is the unit normal vector.

For a triangulated boundary ofn elements we have a total of 2n values ofq andu. Of
these,n are fixed by the boundary conditions, namely,u = constant at the exposed ends of
the Plateau border arms andq = 0 on the rest of the surface. Treatingu andq as constant
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Figure 3. The relationship between the volume of a single vertex,V , the arm length,L, andδ

(see figure 2). The solid curve indicates the results of Evolver calculations and the dashed line
the approximate form used in the analysis presented here. The slope of this line is 4cg ≈ 0.64
since the vertex hasfour attached arms. The magnitude of the vertex correction is indicated by
the arrow.

over each individual triangle, (6) reduces to a set ofn linear equations which can be solved
using elementary numerical methods for the unknown potentials and normal derivatives.
Integrating the values ofq at the border ends gives the current and hence the resistance.

Using this method on a vertex whose surface is tessellated with 3584 triangles, we have
obtained the results shown in figure 4, and hence (including the factor of two, as we did in
equation (5))

L
ρ

eff = L − 1.27δ. (7)

We are now ready to retrace Lemlich’s derivation, incorporating these corrections. It is
necessary to make a further approximation, which treats the lengthL of all Plateau borders
as equal, in order to calculate network conductance. In reality this is strictly correct only
for highly ordered foam structures, but it seems reasonable to use a constant average value
of L for foams which are not highly polydisperse.

Equations (5) and (7), suitably interpreted, suffice to correct Lemlich’s theory for the
effects of the vertices to lowest order. In the absence of vertices the volume of each Plateau
border in the structure would be simply

Vpb = Lcgδ
2 (8)

where cg is the geometric constant defined in equation (2) above. Including the vertex
correction this becomes

Vpb = cgδ
2(L + 1.50δ). (9)
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Figure 4. The relationship between the resistance of a single vertex,R, the arm length,L, and
δ. The solid line shows results calculated using a boundary integral technique, the dashed line
is the linear approximation with the corresponding vertex correction indicated by the arrow.

Hence if Nv is the number of borders per unit volume of the network then the liquid
fractionφl is simplyNvVpb. Equivalently ifLv is the total line length per unit volume then
clearly Nv = Lv

L
andφl can be written as

φl = Lvcgδ
2(1 + 1.50

δ

L
). (10)

To derive the equivalent expression for the conductivity, it is convenient to examine
first the dependence of resistance onL andδ. For a single uniform border of lengthL and
width δ (figure 1, at the start of this section), the resistance is

Rpb = ρlL

cgδ2
(11)

whereρl is the resistivity of the bulk liquid. The vertex term corrects this to

Rpb = ρl

cgδ2
(L − 1.27δ) (12)

or, in terms of conductanceCpb,

Cpb = σlcgδ
2

(L − 1.27δ)
. (13)

It now remains to relate the conductivity of the network to the conductance of its
components, in the manner of Lemlich (1977). It is clear that at this point we may treat the
borders as if they were uniform, with the above effective conductance,Cpb.
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Kirchoff’s laws are then satisfied very simply for the idealized network if the electric
potential8 is a function of one coordinatez only, i.e.8 = −Ez.

Assuming that the conductivity is isotropic, Plateau borders at an angleθ to the z

direction contribute

1j = CpbELLv cos2(θ) (14)

to the current densityj, whereLv is the line length per unit volume as before. Hence taking
the spherical average over all possible orientations relative to the field we find

j = 1

3
CpbELLv (15)

or

j = σf E (16)

where the foam conductivity is

σf = 1

3

Lvcgδ
2σl

(1 − 1.27δ
L
)

and hence, in terms of relative conductivity,

σ = 1

3

Lvcgδ
2

(1 − 1.27δ
L
)
. (17)

Equations (10) and (17) together express the required relationship betweenσ andφl in
a parametric form. This relationship is plotted in figure 5 where we have taken values for
Lv andL corresponding to a bulk Kelvin structure. Note also that this relationship is scale
independent.

Alternatively, since (17) can be rewritten as a quadratic forδ it can be solved to give

δ(σ ) =
√

( 1.27σ
L

)2 + 4
3Lvcgσ − 1.27σ

L

2
3Lvcg

. (18)

Combining this with (10) yields a somewhat cumbersome expression forφl in terms of
σ , equivalent to (10) and (17),

φl = Lvcg


√

( 1.27σ
L

)2 + 4
3Lvcgσ − 1.27σ

L

2
3Lvcg

2

×
1 + 1.50

L


√

( 1.27σ
L

)2 + 4
3Lvcgσ − 1.27σ

L

2
3Lvcg

 . (19)

We have considered various low-order expansions of this but have not found these
useful.

In considering the comparison of theory and experiment in figure 5, it should be recalled
that there are no arbitrary constants in either and that the curve shown depends only on the
structural parametersLv andL taken here for the Kelvin structure. The experimental data
are those of Peters (1995); for details of the apparatus see also the article by Hutzleret al
(1995). The data of Datye and Lemlich (1983) and Chang and Lemlich (1980) are similar.

The agreement seems satisfactory up to a liquid fraction of about 0.08. Beyond this point
there are corrections to the linear approximations of equations (5) and (7), and one must
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Figure 5. Experimental measurements of the relative conductivity of an aqueous foam,
consisting of 3 mm bubbles in a Perspex cylinder of diameter 2 cm and height 70 cm. The
solution used was ordinary tap water and a non-ionic surfactant (dobanol). The dashed line is
the Lemlich limitσ ≡ σf /σl = 1

3φl . The solid curve shows the relationship based on equations
(10) and (17) which include the vertex corrections.

also bear in mind the thickening of the films and their consequent increasing contribution
to σ .

Note that, with the benefit of hindsight, the neglect of the junctions in the Lemlich
theory looks quite naive: both (10) and (17) incorporate large corrections. For example,
at a liquid fraction of 0.05 there is approximately a 100% correction to bothφl andσ but
only a 30% difference between the Lemlich limit andσ(φl) shown in figure 5.

In future work we intend to pursue the nonlinearity to higher values of liquid fraction,
particularly the role of the films. In the earlier experimental work of Datye and Lemlich
(1983), some dependence ofσ on bubble size was noted which is probably indicative of
the contribution of the films.

This theory should also be relevant to other transport properties, particularly heat
conduction in solid foams. With some modification it may also apply to drainage in liquid
foams. It will be interesting to see whether the same sort of cancellation applies in the fluid
dynamics of the Plateau border network. Theories of foam drainage (Verbist and Weaire
1994) have been based on assumptions analogous to those of Lemlich. They have proved
quite successful but now need to be re-evaluated. The general approach which we have
developed may be applied to other foam properties as well, in each case narrowing the gap
between highly idealized models and realistic structures.

Research at TCD was supported by Shell Research, the FOAMPHYS Network (contract
ERBCHRXCT940542) and a Forbairt basic research award. We thank Didier Lasseux for
introducing us to boundary element methods.
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Bonnet M 1995Équations Intégrales etÉléments de Fronti`ere (Paris: CNRS–Eyrolles)
Brakke K 1992Exp. Math.1 141
Chang K-S and Lemlich R 1980J. Colloid Interface Sci.73 224
Clarke N O 1948Trans. Faraday Soc.44 13
Datye A K and Lemlich R 1983Int. J. Multiphase Flow9 627
Hutzler S, Verbist G, Weaire D and van der Steen J A 1995Europhys. Lett.31 497
Lemlich R 1977J. Colloid Interface Sci.64 107
Peters E A J F1995MSc Thesis
Verbist G and Weaire D 1994Europhys. Lett.26 631
Weaire D, Findlay S and Verbist G 1995J. Phys.: Condens. Matter7 L217


